

Particle Detector Systems for LENR – Low Count Rate Particle Measurements

Bob Ledoux, Program Director October 21st, 2021

Outline

- Nuclear Products from Fusion Reactions
- Range and Energy Loss
- State of the Art Particle Detectors and Systems
- Experimental Setup and Analysis Discussion

Fusion and Detector Reactions

(1)
$${}^{2}_{1}D + {}^{3}_{1}T \rightarrow {}^{4}_{2}He = (3.52 \text{ MeV}) + n^{0} = (14.06 \text{ MeV})$$

Mono-energetic (2i) ${}^{2}_{1}D + {}^{2}_{1}D \rightarrow {}^{3}_{1}T = (1.01 \text{ MeV}) + p^{+} = (3.02 \text{ MeV}) = 50\%$

(2ii) $\rightarrow {}^{3}_{2}He = (0.82 \text{ MeV}) + n^{0} = (2.45 \text{ MeV}) = 50\%$

(3) ${}^{2}_{1}D + {}^{3}_{2}He \rightarrow {}^{4}_{2}He = (3.6 \text{ MeV}) + p^{+} = (14.7 \text{ MeV}) = (4.3 \text{ MeV}) = 4.2 \text{ MeV}$

(4) ${}^{3}_{1}T + {}^{3}_{1}T \rightarrow {}^{4}_{2}He = (3.6 \text{ MeV}) + p^{+} = (14.7 \text{ MeV}) = (4.2 \text{ Me$

Notable signal/detector reactions

$$^{14}N(n,p)^{14}C$$
 $Q = 0.626 \text{ MeV}$ $E_p = 0.58 \text{ MeV}$

$$^{10}_{5}B + ^{1}_{0}n \rightarrow {}^{4}_{2}He + ^{7}_{3}Li + 0.48 MeV \gamma$$
 $E_{\alpha} = 1.47 \text{ MeV}$ $E_{\text{Li}} = 0.84 \text{ MeV}$

$$^{1}H(n,\gamma)^{2}H$$
 $Q = 2.2 \text{ MeV}$ $E_{\gamma} = 2.2 \text{ MeV}$

57%

43%

Fusion Reaction Products and Properties

H, He, etc.

Neutrons

Photons

Beta (e⁻⁺)

Energy(E)

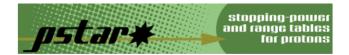
Mono-energetic, Continuous

Time correlation

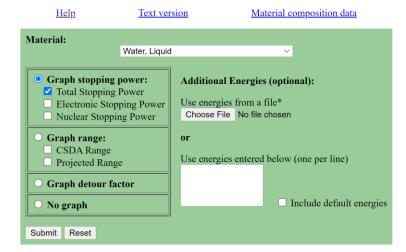
Charge (Z)

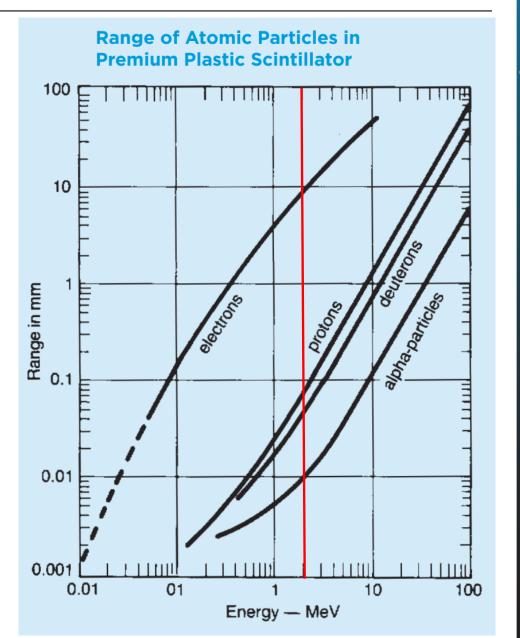
Rest mass (M)

Direction

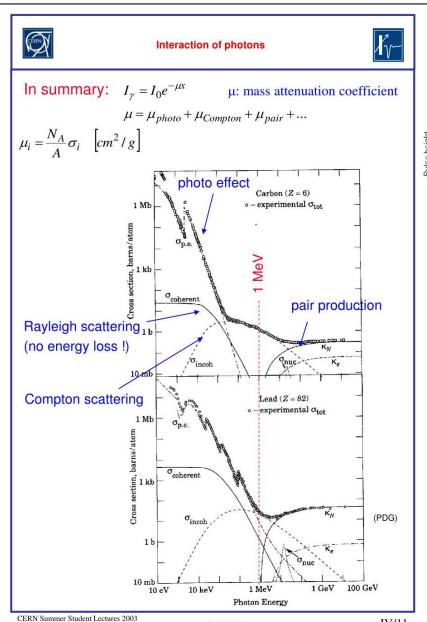

Multiplicity

Non-relativistic Charge Particle Energy Loss

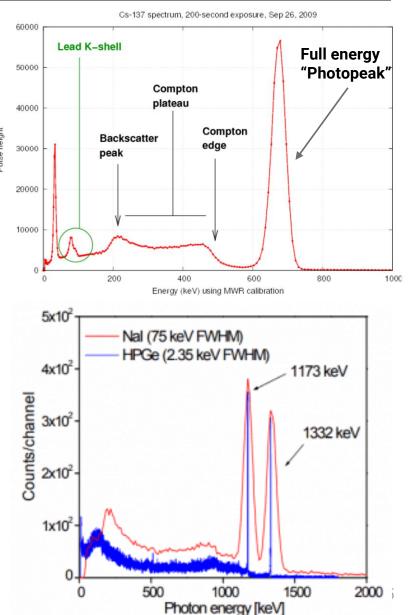

Alpha particles have very short ranges in solids - 10µm Energy loss can be used to distinguish p, alphas and betas Programs exist for accurate charged particle energy loss


 $-dE/dx \sim mz^2/E * (Z/A) * \rho$

The PSTAR program calculates stopping power and range tables for protons in various materials. Select a material and enter the desired energies or use the default energies. Energies are specified in MeV, and must be in the range from 0.001 MeV to 10000 MeV.



https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html


Photon Interactions

- MeV photons very penetrating in low-Z materials
- ► High-Z material best for shielding
- Required detector volume scales with interaction length
- Materials are very important for photopeak resolution
 - Photopeak not present in organic scintillators
 - Photopeak requires full energy deposition

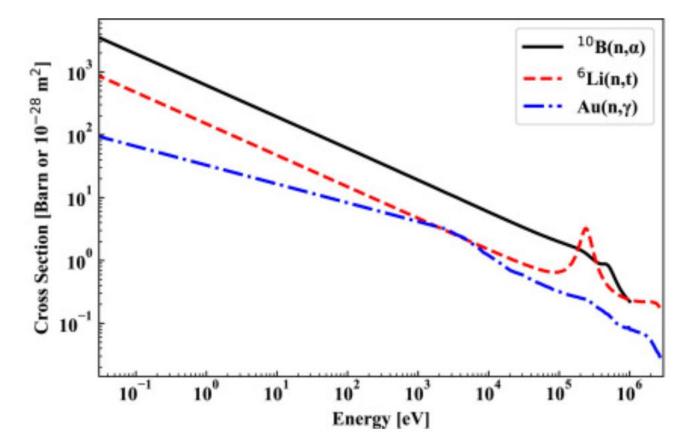
Christian Joram

IV/11

Neutron Interactions

Classification of neutrons by energy

Thermal: E < 1 eV (0.025 eV)


Epithermal: 1 eV < E < 10 keV

Fast: > 10 keV

- ► Thermal neutrons 1000x cross section of MeV neutrons
- High-energy n are very penetrating and provide unique signature with detection via recoil of charged particle
- High-energy n can be thermalized in hydrogenous materials
- Free neutrons have 10-minute half-life

Thermal Neutron Cross Sections

Nuclide	Cross section (barns)		
$^{10}\mathrm{B}$	3837		
¹¹ B	0.005		
¹² C	0.0035		
¹ H	0.33		
¹⁴ N	1.70		
³⁵ C1	43.6		
23 Na	0.534		
157Gd	254,000		
¹⁵³ Gd	0.02		

Types of Particle Detectors

- ► CR-39
- Proportional Counters
- Semiconductor
- Scintillators

Like cars, many varieties of particle detectors exist, but they are not the same

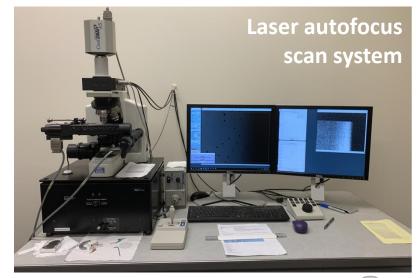
- Strong correlation of interaction length and volume of detector
- Electronic noise and detector signal analysis are currently seldom the limiting factors in detector energy resolution
- Background is the detection of a "real" event that is not associated with the "signal"

CR-39 for Neutron Detection:

Requires well-established operating procedures; minimization of background

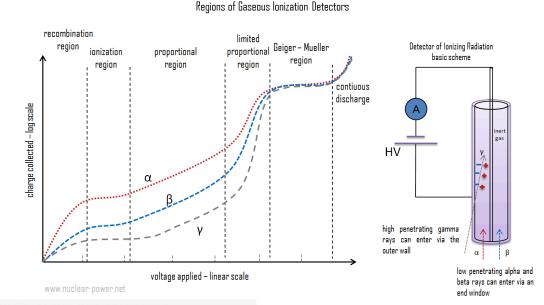
Many variables contribute to successful use for neutron and charge particle detection

Detection 100% for charged particles, 10⁻⁴ n


Energy range for protons approximately 100 keV to 10 MeV

Etch for 1-6 hrs in NaOH solution for 1-6 hrs in 80°C (higher-temperature solutions will generate more defects in the CR-39)

Operating procedure:

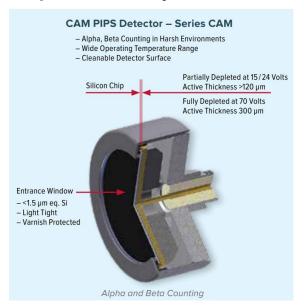

- Purchase CR-39 with moderate efficiency of detecting charged particles [high-efficiency CR-39 has high levels of intrinsic background (defects)].
- Ship CR-39 under controlled environmental conditions.
- Store CR-39 in a freezer to mitigate ageing (changes in the CR-39 detection properties).
- Develop rigorous CR-39 etch and scan procedures to understand the characteristics of neutron-induced signal tracks (size, contrast, and average eccentricity).
- Minimize handling. Minimize cleaning as it may scratch the CR-39 and generate defects that look like tracks.

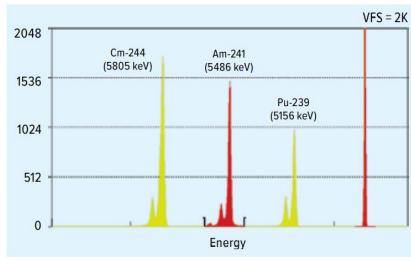
Proportional Counters for Charged Particles, n and Photons

- Inexpensive
- Variety of Geometries
- Medium energy resolution no direct PID
- High efficiency for p, α and β but <u>requires</u>
 <u>very thin window</u>
- OK for X-ray , low efficiency for gamma
- 3He, Li and Boron added for thermal neutron detection via capture and charged particle decay
- Can be made into multi-wire configuration for large coverage – window an issue
- High signal gain Simple readout electronics

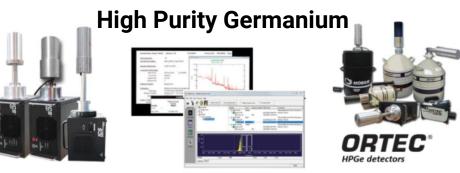
Boron Lined Proportional Counters

X-Ray Proportional Counters





Semiconductor Detectors


- ► Resolution approaches theoretical limit of e-ion pair energy of few eV with low-noise active filter electronics in direct conversion limit .1%
- Many geometries possible
- \$\$\$ high per volume of detector
- Complete commercial systems available


Silicon planar/surface barrier Alpha and X-ray detection

RDT Domino® Solid-State Tile Detectors https://radectech.com/msnd_technology

Scintillators – Swiss Army Knife of Detectors

Emission peak (nm)

Light yield (ph/keV)

Density (g/cm³)

Chemical composition

 $1/\mu$ (cm) at 140 keV

 $1/\mu$ (cm) at 511 keV

 $\mu_{\rm ph}/\mu$ (%) at 511 keV

Decay time

Slow (ns)

Fast (ns)

G.F. Knoll, Radiation Detection and Measurement - 3rd edition (Chapters 16 to 18), John Wiley & Sons, 1999

CsI(Tl)

565/420

680/3000

65

4.5

0.28

2.4

22

BaF₂

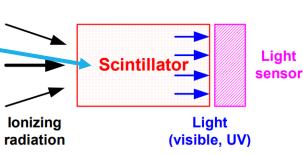
310/220

11/1.5

600

0.8

4.9


0.29

2.3

19

Properties

- Density and Z
- Light output
- Wavelength quantum efficiency
- Mechanical/chemical stability/Temp
- Can be doped for neutron detection
- Decay Time: pile-up, integration filter
- Tremendous variety of scintillators
 - Inorganic high-Z spectroscopy
 - Organic large volume gamma and neutron counters
- Wide variety of light sensors
- **Energy Resolution**
 - Scintillator light output
 - Light collection geometry and coatings
 - Wavelength of scintillator and OE of sensor
- Time resolution for coincidence measurements

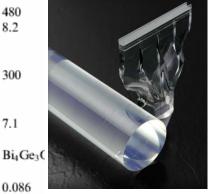
NaI(Tl)

410

230

3.7

0.41


3.1

18

38

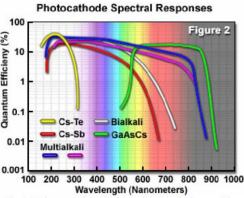
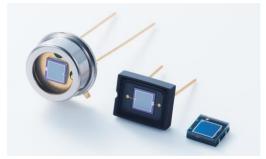



Fig. 4.7. The spectral sensitivities of photocathode materials.

PIN diodes readout

Best energy resolution from inorganic scintillator few %, NaI, CsI closer to 7%

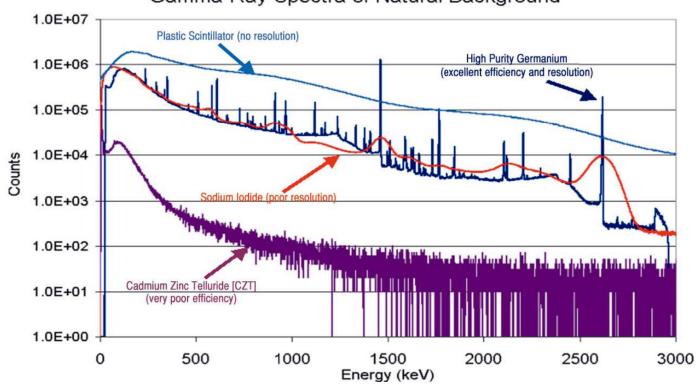
300

7.1

0.086

Detector Summary

- All detectors have capabilities in the energy range .1 to few MeV
- Need to get close for charged particle measurements: use of thin windows, re-entrant ports, etc.
- Usually exists a solution that operates at elevated temp and harsh environments
- Selection often based on required detection efficiency, and energy resolution (particle dependent)
- Time correlation greatly facilitates data fusion
- Neutron detectors: thermal very efficient, fast neutrons more information


Detector Type	Pros	Cons	Sweet Spot	Cost:
CR-39	Placement options, multi-particle	Handling, processing tricky, not real time	n, Charge	\$
Proportional Counters	Real time, many geometries, multi-particle	Thin windows, efficiency, low E-resolution	Charged, n, X-ray	\$-\$\$
Semiconductor	Real time, many geometries, multi-particle, best E resolution	Cooling required for best E-resolution	All, high E- resolution	\$-\$\$\$\$
Scintillators	Real time, many geometries, multi-particle	Medium E-resolution	All, medium E- resolution	\$-\$\$

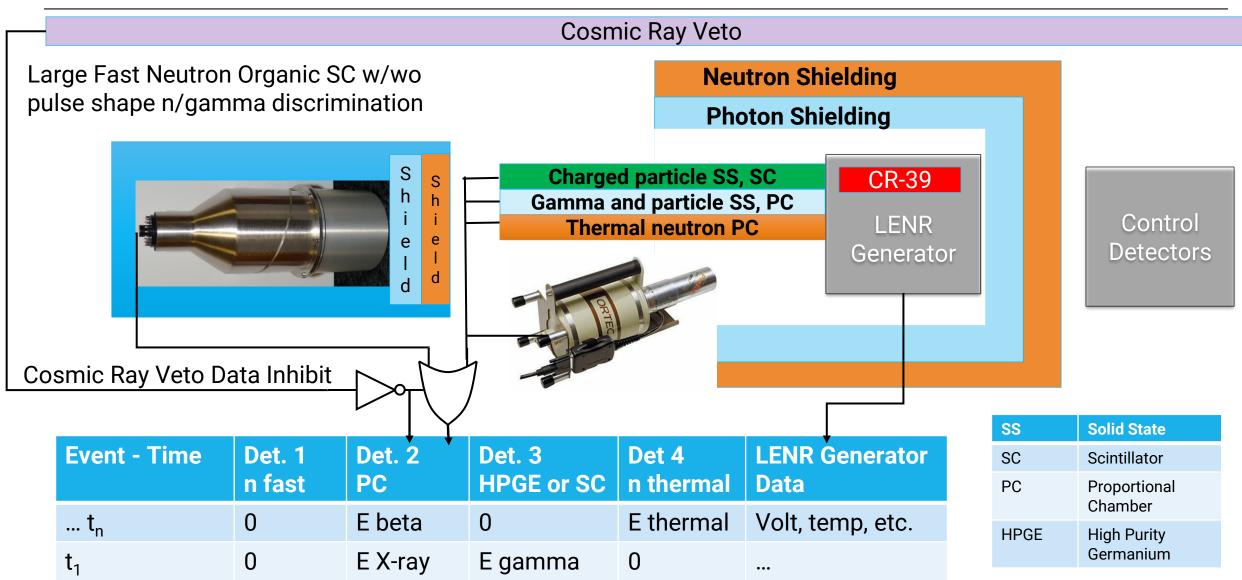
Notes on Background and Shielding

- Very location dependent
- Primary radioactive decays: thorium, uranium decay chains and ⁴⁰K
- Building material background can be either a shield or source!
- Cosmic Rays must also be accounted for (muons and interaction products)

Photon Natural Background

Gamma-Ray Spectra of Natural Background

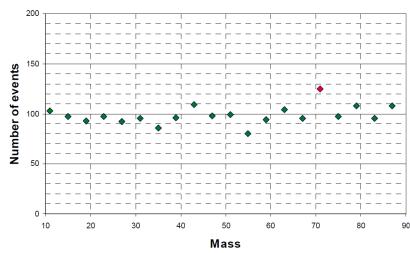
Cosmic Ray Fluxes at Sea Level


180 particles (mostly muons) /m²/sec Mostly muons and e^{+-,} 10 cm x 10 cm – 2 particles/sec

Putting it all together

E fast

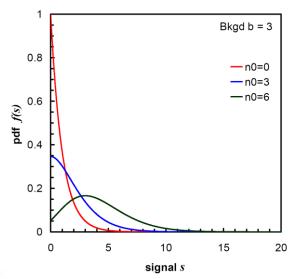
0


 t_0

0

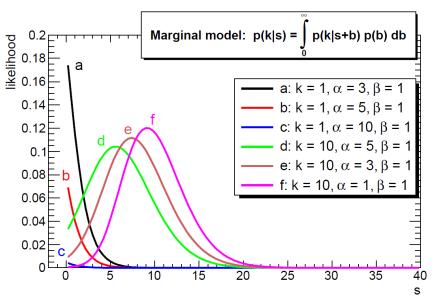
E Gamma

Determining the Confidence Level of the Signal


Significance of Measurement "Is bin 71 consistent with a background fluctuation?"

For large
$$N$$
, $S_1 = \frac{signal}{\sqrt{bkgd}} = \frac{n_{observed} - b}{\sqrt{b}} = \frac{s}{\sqrt{b}}$

Better approx $S_{cL} = \sqrt{2 \ln Q}$, where $Q = \frac{p(n_0 \mid s + b)}{p(n_0 \mid b)}$


Bayesian analysis of signal likelihood in the presence of a known background

$$f(s) = p(s | b, n_0) = \frac{p(n_0 | b + s) \cdot \pi(s)}{\int_{0}^{+\infty} p(n_0 | b + s) \cdot \pi(s) \cdot ds}$$

Marginalize the background distribution

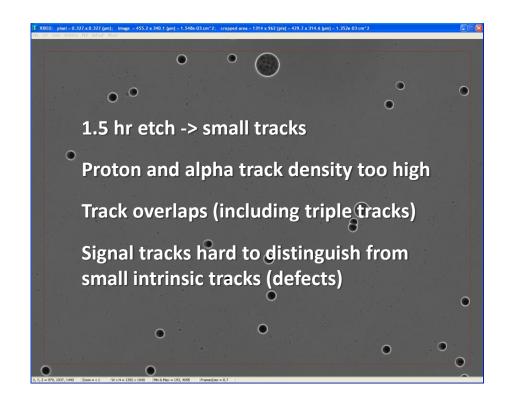
$$p(k|s) = \int_0^\infty \operatorname{Poi}(k|s+b) \operatorname{Ga}(b|\alpha,\beta) \, \mathrm{d}b$$

Bayesian analysis can be applied to multiple detector measurements and system modeling!

significance
 1
 2
 3
 4
 5

 probability (p-value)
 16%
 2.3%
 0.14%
 3×10⁻⁵
 3×10⁻⁷

Thank You

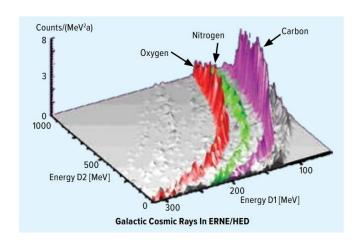

robert.ledoux@hq.doe.gov

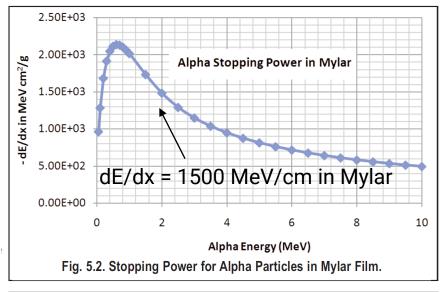
CR-39 for Neutron Detection:

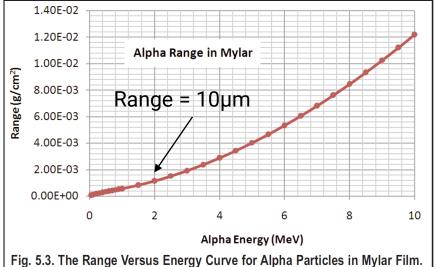
Requires well-established operating procedures; minimization of background

Minimization of Background:

- In an experiment, minimize CR-39 exposure to heat as heat generates defects in the CR-39 that are often mistaken as signal tracks.
- Don't run an experiment for long periods of time, which could cause track overlap (either from particles or heat).
- Etch the CR-39 for long enough time to effectively separate neutron-induced tracks from intrinsic background (defects).
 This is done by looking at track size, darkness and ellipticity.


Look for typical features in the data that would indicate neutron interaction with the CR-39.


- Neutrons interact volumetrically with the CR-39 and generate a uniform distribution of tracks on the CR-39 surface.
- Neutrons generate higher levels of tracks on the backside than on the front side of the CR-39.
- In case of high-energy neutrons (> 3 MeV), tracks from several types of ions originating from elastic scattering, (n,p) and (n,α) reactions should be observed.


Backup

$$-\frac{dE}{dx} \simeq \frac{4\pi z^2 e^4}{m_e v^2} \rho \frac{Z}{A} N_0 \ln \left[\frac{m_e v^2}{\overline{I}} \right]$$

Other Neutron Facts

TABLE 9.4. Maximum Fraction of Energy Lost, Q_{max}/E_n from Eq. (9.3), by Neutron in Single Elastic Collision with Various Nuclei

Nucleus	Q_{max}/E_n
H¦H	1.000
² ₁ H	0.889
⁴ ₂ He	0.640
⁹ ₄ Be	0.360
¹² ₆ C	0.284
¹⁶ ₈ O	0.221
⁵⁶ ₂₆ Fe	0.069
¹¹⁸ ₅₀ Sn	0.033
²³⁸ ₉₂ U	0.017

Table 5.15. Averaged Number of Collisions n_{co} Required to Thermalize a 14 MeV Neutron

Element	n _{co} (from 14 MeV)	Element	n _{co} (from 14 MeV)
Н	19	Al	290
С	112	Si	297
0	154	Cl	343
Mg	235	Ca	380

Hearst and Nelson (1985).

Fast Neutron Detectors

BC-523A* 10B loaded; pulse shape discrimination properties total absorption neutron spectrometry

Fusion Reaction Products and Properties

Charged Particles:

H, He, etc.

Neutrons

Photons

Beta (e⁻⁺)

Energy(E)

Mono-energetic, Continuous

Time correlation

Rest mass (M)

Charge (Z)

Direction

Multiplicity